skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Awadelkarim, Amel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In many contexts involving ranked preferences, agents submit partial orders over available alternatives. Statistical models often treat these as marginal in the space of total orders, but this approach overlooks information contained in the list length itself. In this work, we introduce and taxonomize approaches for jointly modeling distributions over top-k partial orders and list lengths k, considering two classes of approaches: composite models that view a partial order as a truncation of a total order, and augmented ranking models that model the construction of the list as a sequence of choice decisions, including the decision to stop. For composite models, we consider three dependency structures for joint modeling of order and truncation length. For augmented ranking models, we consider different assumptions on how the stop-token choice is modeled. Using data consisting of partial rankings from San Francisco school choice and San Francisco ranked choice elections, we evaluate how well the models predict observed data and generate realistic synthetic datasets. We find that composite models, explicitly modeling length as a categorical variable, produce synthetic datasets with accurate length distributions, and an augmented model with position-dependent item utilities jointly models length and preferences in the training data best, as measured by negative log loss. Methods from this work have significant implications on the simulation and evaluation of real-world social systems that solicit ranked preferences. 
    more » « less
  2. Balanced graph partitioning is a critical step for many large-scale distributed computations with relational data. As graph datasets have grown in size and density, a range of highly-scalable balanced partitioning algorithms have appeared to meet varied demands across different domains. As the starting point for the present work, we observe that two recently introduced families of iterative partitioners---those based on restreaming and those based on balanced label propagation (including Facebook's Social Hash Partitioner)---can be viewed through a common modular framework of design decisions. With the help of this modular perspective, we find that a key combination of design decisions leads to a novel family of algorithms with notably better empirical performance than any existing highly-scalable algorithm on a broad range of real-world graphs. The resulting prioritized restreaming algorithms employ a constraint management strategy based on multiplicative weights, borrowed from the restreaming literature, while adopting notions of priority from balanced label propagation to optimize the ordering of the streaming process. Our experimental results consider a range of stream orders, where a dynamic ordering based on what we call ambivalence is broadly the most performative in terms of the cut quality of the resulting balanced partitions, with a static ordering based on degree being nearly as good. 
    more » « less